Pain Management (Outline)

Sarel van Amstel & Ricardo Videla

Pain management
Pre-treatment before painful procedures provides better analgesia than occurs when withholding treatment until pain sensations develop
Difficult/impossible to manage pain associated with chronic disease such as lameness
Combination treatment approach required

Pathology of Pain
Responses of the nervous system to noxious stimuli are not static “hard-wired” events
Repeated noxious stimuli can:
 - Change the ability of the peripheral receptor to respond to a stimulus
 - Change the perception of that response at the level of the brain

Peripheral Sensitization
Results from agents released from damaged tissues including:
 - Cytokines, kinins, arachidonic acid derivatives, K+, H+, peptides & other agents (e.g. histamine)
 - Cause an increase in the sensitivity of the nerve endings
 - The thresholds that are perceived as painful become lower and the system becomes “sensitized” (windup)

Central Sensitization
Involves the neurotransmitter glutamate probably acting through its NMDA receptor. *Ketamine* - antagonist at NMDA receptor and on that basis has analgesic properties

Drugs used in pain control
1. Opioids
2. NSAIDs
3. Corticosteroids
4. Alpha-2 agonists
5. Local anesthetics
6. Acupuncture/electro-acupuncture
 - <20 Hz → endorphin release (acute pain)
80 - 120 Hz → serotonin release (chronic pain)
7. Laser prevents/decreases inflammation. Also increases range of motion/soft tissue elasticity
8. Physical therapy

Opioids: Morphine
Mostly for *acute* pain
Inexpensive
SC or IM 0.25 – 0.5mg/kg 4-6 hourly
Epidural 0.1mg/kg q12h
Side effects:
Decreased gastro-intestinal motility with prolonged use
Ataxia – if dose is too big
Excessive motor activity (probably species dependent and depending on circumstances!)
Vomiting, hypothermia, panting,
CNS and respiratory depression

Transdermal Fentanyl
75 – 100x more potent than morphine
Skin preparation:
Clip, no alcohol
Avoid skin irritation
Secure lightly with elasticon

Fentanyl in alpacas
Mean residence time (range) after i.v. dosing (2µg/kg) was 1.30 hr (0.65-4.00 hr).
Bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27-64%).
Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 µg/hr (29-81 µg/hr) between 8 and 72 hr after patch placement. Just to emphasize that uptake is very variable

Pharmacokinetics of intravenous and transdermal fentanyl in alpacas.
Transdermal Fentanyl (patch)

Goat
Variable plasma concentrations
Peak at 8 – 18 h
But do not know if these values are therapeutic!

Sheep
peak at 12 h
Inter-individual variations

Pigs
Fentanyl* Synthetic opioid
Transdermal patch: 50 or 100 ug/h (should aim for 2 ug/kg/h)
Plasma concentrations 6.5-8.5h post-application (interscapular)
Differences in plasma concentrations between pigs may lead to signs of toxicity – probably unlikely as pigs are fairly insensitive to opioid effects and under dosing more likely!
Combination of morphine epidural (0.1mg/kg) and fentanyl patch (50ug/h) resulted in increased activity and appetite following abdominal surgery

Buprenorphine (very expensive)
Partial mu agonist
0.01-0.05 mg/kg IM and 0.005-0.01 mg/kg IV q8-12h
Effect last 8-12 hours
Mild to moderate acute pain
No respiratory depression
Side effects:
Inappetence and unwillingness to move
Agitation
Inhibition of rumination

Cost analysis for a 30kg goat
Morphine: $0.83/mL (might want to put concentration here -15 mg/mL
$3.30 to $5.00 per day q4-6h
Fentanyl patch: $27 each
Application for 3 days

Buprenorphine: $17.40/mL
$52.00 per day for 0.01 mg/kg q8h

Butorphanol
Short acting, analgesic effect not as potent as other opioids
0.05 to 0.5 mg/Kg for sedation and analgesia (Goats and camelid)

Tramadol (probably minimal analgesic effects)
Low abuse potential (not a controlled substance)
Little effect on GI motility
Little to no cardiovascular and respiratory effects

Alpacas (adults):
PO (11mg/Kg): poor bioavailability (5.9 – 19.1 %)

Llamas (adults)
IV (2mg/Kg): One llama in study had adverse effects (neurologic)

Goats (6-9 months)
IV (2mg/Kg): no adverse effects
PO (2mg/kg): no adverse effects, active metabolite not detected

NSAIDs
Advantages
Do not alter behavior or level of consciousness
Synergistic effect with opioids
Analgesia, anti-inflammatory, antipyretic

Disadvantages
Rarely control severe pain
Can cause GI or renal toxicity
Inhibit COX synthase and therefore prostaglandins (COX)
Pro-inflammatory cytokines

COX1Inhibitors: responsible for majority of acute and chronic NSAID toxicities
COX2 Inhibitors: main one responsible for overproduction of PG after injury or infection

NSAIDs
Flunixin meglumine:
0.5 - 1.1 mg/Kg, IV, q 12 – 24 h
Meloxicam: Cox 2 selective
IV, IM, SC
Pigs: 0.3 – 0.5 mg/kg, PO, q 24 h
Sheep: 1mg/Kg, PO, q 24 h
Goats: 1 mg/Kg, PO, q 24 h
Llamas: 1 mg/Kg, PO, q 48 – 72 h
Firocoxib: Cox 2 selective
No studies in small ruminants, pigs, or SAC

Corticosteroids
Chronic pain, immune mediated disease
Pigs: Prednisone 1 – 2 mg/Kg PO q 24 h

Osteoarthritis
Treatment Combination therapy

NSAID
Tramadol
Gabapentin
Cosequin. 2 tabs OD Contains glucosamine; chondroitin; Vit C; Mg
MSM 2 tabs OD
Conquer HA gel. 2cc OD
PSGAG 250mg/ml (polysulfated) 1ml im every 4 days for 2-4 weeks then once a week

Osteoarthritis- Severe cases
Treatment
Intra-articular Depomedrol plus amikacin
Prednisolone tabs 1mg/kg
Pigs - “Corticosteroid resistant”
PSGAG once a week
Alternate between prednisolone and meloxicam every 6-8 weeks

Alpha-2 Agonists
Effects: sedation, muscle relaxation, analgesia
Analgesic effect is synergistic with opioids
Cardiovascular side effects: sinus bradycardia and bradyarrhythmias
Mild respiratory depression
Decrease in insulin → hyperglycemia → promote diuresis (ADH inhibition)
Can trigger labor (uterine contractions)
Xylazine:
0.05 – 0.2 mg/Kg IV or IM

Alpha-2 Antagonists
Contraindicated in debilitated animals or if cardiovascular disease
Consider giving these IM

Tolazoline: 1.5 to 2 mg/Kg IV or IM to reverse xylazine
Give slowly, watch for reactions

Yohimbine: 0.125 mg/Kg IV to reverse xylazine
Give slowly, watch for reactions
Weak effect in ruminants

Systemic Lidocaine
Potential Benefits:
Anti-inflammatory
Analgesic
Neuropathic pain
SC, IM or regional IV block
Prevent depolarization of sensory nociceptors
primarily by blocking Na channels

Systemic Lidocaine
Rapid clearance
Loading dose of 2-3mg/kg /5-15 minutes
Followed by 3-6 mg/kg/hour CRI
Alternatively, bolus every 2-3 hours.
Bolus = 3 mg/kg in fluid bag over 20-30 minutes

Epidural Analgesia in Small Ruminants
Morphine
0.1 mg/Kg (6 -12 h)
Lidocaine
1ml/10 kg: blocks perineum and hind legs
1ml/50 Kg: blocks perineum

Multimodal Analgesia
NSAID-Opioid prior to surgery
Infiltration with local anesthetic
Epidural
Post-operative NSAID/opioid

Castration/Disbudding
Xylazine (0.1 – 0.2 mg/kg IM) Species??
Lidocaine (toxic dose 6-10 mg/Kg) Might be less if given around horn but as it is very vascular and uptake is rapid
Flunixin meglumine
Meloxicam

Camelid Castration
Combine and give IM
Ketamine: 5.0 mg/Kg
Xylazine: 0.5 mg/kg
Butorphanol: 0.1 mg/Kg

Alternative
1ml (10mg) of butorphanol
1 ml (100mg) xylazine
1 bottle (1 gram) Ketamine
Alpacas: 1ml/18 kg
Llamas: 1ml/23 kg
Intratesticular lidocaine