OBJECTIVES

- Basic Approach to Interpretation
- Basic Technical Parameters
- Developmental Bone Diseases
- Aggressive vs. Non-aggressive Bone Diseases

Approach to Interpretation

- How to read an orthopedic film
 - Check film imprint label
 - Evaluate position and exposure
 - Evaluate soft tissues
 - Evaluate periosteal margins for new bone formation
 - Evaluate all cortices and subchondral bone
 - Evaluate the medullary cavity for changes in opacity
 - Evaluate joint capsular attachments
 - Evaluate joint spaces
 - Evaluate the periarticular margins
 - Check the physeal closures in relation to the age of the animal
 - Stand back to evaluate overall alignment and relationship of bones

Roentgen Signs

- Opacity
- Size
- Shape
- Number
- Location or Position
- Margination or Contour

Radiographic Technique

- Bone
 - High density
 - High Z due to Ca & Ph
 - No motion
- Low kVp technique (<60-80) improves contrast
- Positioning: At Least 2 Orthogonal Projections
 - Oblique projections: carpus/tarsus
 - Stressed projections: instability

Developmental Bone Diseases
Osteochondrosis (OC/OCD)

• Failure of endochondral ossification
 • Leads to increased thickness of articular cartilage
 • Appears as subchondral defect
• Osteochondrosis = OC
• Osteochondritis dissecans = OCD
 • When a flap is formed and separates from subchondral bone
 • Only seen radiographically when... mineralized or... with arthrography

• Occurrence
 • Young, rapidly growing, large to giant breed dogs
 • Usually develop signs between 6-9 months of age
 • Occurs in specific anatomic locations
 • Caudal aspect of humeral head
 • Medial aspect of the humeral condyle
 • Lateral femoral condyle
 • Traction ridges of the talus (medial most commonly)
 • Can occur in other locations
 • Frequently bilateral

Shoulder Osteochondrosis

• Roentgen signs
 • Subchondral defect and sclerosis of the caudal or caudolateral aspect of the humeral head

Elbow Osteochondrosis

• Roentgen signs
 • Subchondral defect and sclerosis of the medial aspect of the humeral condyle, best seen on DLP/OMO view
 • Secondary osteoarthritis

Stifle Osteochondrosis

• Roentgen signs
 • Subchondral defect and sclerosis of the distal aspect of the lateral femoral condyle
 • May also affect medial condyle but less common
 • Joint effusion and osteoarthritis

Tarsal Osteochondrosis

• Roentgen signs
 • Flattening of the medial trochlear ridge of the talus
 • Widening of the joint space
 • On the lateral view, the plantar aspect of the tibiotarsal joint will appear wide
 • Associated with intracapsular ST swelling and DJD
Elbow Dysplasia

- Fragmented medial coronoid process (FCP)
- Ununited anconeal process (UAP)
- Osteochondrosis of the medial humeral condyle (OC)
- Asynchronous growth of the radius and ulna (?)
- Proximal ulnar dysplasia (?)
- Flexor Enthesopathy (?)

Fragmented Medial Coronoid Process

- Occurrence
 - Most common developmental abnormality of the elbow
 - Medium and large breed dogs
 - Retrievers, GSD, Bernese Mountain Dog
 - Clinical signs develop usually at 5-12 months of age
 - Higher incidence in males

- Roentgen signs
 - Earliest signs are sclerosis of the trochlear notch of the ulna and osteophytes on the anconeal process and radial head
 - Osteophytes on the medial coronoid seen on the craniocaudal view

Ununited Anconeal Process

- Occurrence
 - Anconeal process forms from separate center of ossification
 - Normally fuses to proximal ulna at 5 months of age
 - Failure to fuse (likely due to joint incongruity) → UAP
 - GSD predisposed; also seen in other large breeds and Bassett hounds

- Roentgen signs
 - Irregular, lucent line crossing the anconeal process with adjacent sclerosis
 - Best seen on flexed lateral view
 - Secondary osteoarthritis

Panosteitis

- Occurrence
 - 5-18 months of age; reports in mature animals (out to 7 years)
 - Large to giant breed dogs
 - GSD, Dobermans, Retrievers, Bassett hounds
 - Self limiting disease with unknown etiology
 - Shifting leg lameness with pain on palpation of long bones
 - Histologically no evidence of inflammation
Panosteitis

• Roentgen signs
 • Early
 • Increased medullary opacity
 • Usually in diaphysis near nutrient foramen
 • Blurring of trabecular pattern

Panosteitis

• Roentgen signs
 • Late
 • Medullary opacities become better delineated → patchy appearance of medullary cavity
 • Adjacent opacities may coalesce
 • Rough endosteal surface
 • Solid periosteal reaction may be noted

Hypertrophic Osteodystrophy (aka HOD & Metaphyseal Osteopathy)

• Occurrence
 • 2-7 months of age
 • Large to giant breeds of dog
 • Unknown etiology
 • Usually systemically ill
 • Swollen, painful distal radius/ulna and distal tibia
 • Pyrexia

Hypertrophic Osteodystrophy (HOD)

• Roentgen signs
 • Early
 • Thin, radiolucent band in the metaphysis just proximal to the physis → "double physis sign"
 • Sclerosis adjacent to the radiolucent line in the metaphysis

Hypertrophic Osteodystrophy (HOD)

• Roentgen signs
 • Late
 • Formation of a cuff or sleeve of periosteal new bone adjacent to the metaphysis, which is separated from cortex by thin, lucent zone
 • Represents subperiosteal hemorrhage

Hypertrophic Osteodystrophy (HOD)

• Roentgen signs
 • Late
 • Periosteal reaction becomes more solid and confluent with the cortex later on
 • Results in marked bony enlargement of the metaphysis
Retained Cartilaginous Core

- **Occurrence**
 - Unknown etiology
 - Form of OC of the distal ulnar metaphysis/physis
 - Failure of endochondral ossification resulting in formation of core of cartilage in the metaphysis

- **Large to giant breeds**
 - Saint Bernard
 - Usually develop clinical signs around 6-12 months of age
 - Often bilateral

- **Roentgen signs**
 - Conical, radiolucent zone extending from the distal ulnar physis proximally into the distal ulnar metaphysis
 - Smoothly margined or irregular

Hip Dysplasia

- **Normal hip joint**
 - At least ½ of the femoral head should be covered by the dorsal acetabular rim
 - The femoral neck should be narrower than the head and have a smooth margin

- **Roentgen signs**
 - Morgan line
 - Caudolateral Curvilinear Osteophyte formation along caudal femoral neck usually secondary to joint laxity
 - These osteophytes are actually enthesisophytes at the attachment of the joint capsule

Hip Dysplasia

- **Roentgen signs**
 - Periarticular osteophytes form along the acetabular rim, resulting in an irregular edge
 - Shallow, flattened acetabulum
 - Inadequate femoral head coverage or even subluxation

Aseptic Necrosis of the Femoral Head (Legg-Calve-Perthes)

- **Occurrence and Pathogenesis**
 - Adolescent toy and small breed dogs
 - Poodles, miniature pomeranians, terriers
 - Bilateral <15% of the time
 - Compromised blood supply to proximal femoral epiphysis
 - Necrosis of subchondral bone
 - Normal blood supply to femoral head in adult dogs
 - Synovial membrane (sole supply in puppies)
 - Arteries in round ligament of the head of the femur
 - Nutrient vessels through metaphysis (after physeal closure)
Aseptic Necrosis of the Femoral Head (Legg-Calve-Perthes)

- **Roentgen signs**
 - Increased width of joint space
 - Articular cartilage thickens as ischemia causes necrosis of subchondral bone

Aseptic Necrosis of the Femoral Head (Legg-Calve-Perthes)

- **Roentgen signs**
 - Irregular opacities in the femoral head
 - Fragmentation of trabeculae
 - Patchy regions of osteolysis in femoral head
 - Invasion of vascular granulation tissue absorbing and replacing dead bone

Patellar Luxation (PL)

- **Occurrence**
 - Young, small breed dogs; also seen in large breeds
 - Lateral luxation in small breeds
 - Lateral in large breeds
 - Most commonly congenital/developmental
 - Can be traumatic
 - Associated with malalignment of the quadriceps due to rotation and/or deformity of the femur and/or tibia

Medial Patellar Luxation (MPL)

- **Roentgen signs**
 - Patella medial to trochlear groove
 - Coxa vara
 - Lateral bowing of distal femur
 - Medial bowing of the proximal tibia
 - Medially located tibial tuberosity and quadriceps
 - Shallow trochlear groove
 - Requires oblique view to evaluate
 - Secondary osteoarthrosis usually mild
Pattern of Bone Lysis

- **Geographic lysis**
 - Large area of lysis
 - Lesion may appear expansile
 - Well-defined with short zone of transition
 - Nonaggressive or aggressive; however, usually considered least aggressive form of lysis
 - Bone cysts, multiple myeloma

- **Moth-eaten lysis**
 - Multiple smaller areas of lysis
 - These areas may become confluent to form a larger area of lysis
 - Usually has indistinct margins (long zone of transition)
 - Usually aggressive
 - *Osteomyelitis or neoplasia*

- **Permeative lysis**
 - Numerous small or pinpoint areas of lysis
 - Margins are indistinct (long zone of transition)
 - Most aggressive pattern
 - Usually associated with neoplasia

Summary of Lytic Patterns

- **Normal**
- **Geographic**
- **Moth-eaten**
- **Permeative**

Classify based on most aggressive feature!!!
Zone of Transition

Demarcation between the lesion and normal adjacent bone

- **Long zone of transition**
 - Demarcation between lesion and normal bone is less distinct
 - More aggressive lesions such as osteomyelitis and neoplasia

- **Short zone of transition**
 - Abrupt demarcation between normal bone and lesion
 - Nonaggressive lesions like a bone cyst

Type of Periosteal Reaction

- **Periosteal reactions**
 - Periosteum composed of two layers;
 - Inner cambium layer (bone producing)
 - Outer fibrous layer
 - Periosteum is attached to the cortex by Sharpey's fibers

- Periosteal reaction classified in terms of:
 - Aggressiveness
 - Activity
 - Duration

Type of Periosteal Reaction

- **Aggressiveness**
 - Classification based on organization of new bone
 - The more disorganized the new bone formation \rightarrow the more aggressive the lesion

Primary Bone Tumors

- **Occurrence**
 - Mostly large and giant breed dogs; no breed predilection
 - Mean age = 7 years
 - Bimodal distribution seen in animals as young as 6 months
 - Slightly more common in male dogs
 - May be associated with a previous fracture or metallic implant

Cortical Disruption

- Processes that destroy cortices are more aggressive than lesions that allow the cortex to remodel or conform to the enlarging mass

- Intact Cortex
- Disrupted Cortex
Primary Bone Tumors

- Roentgen signs
 - Radiographic appearance is variable
 - Primarily osteoblastic
 - Primarily osteolytic
 - Combination of both
 - Lytic and/or productive changes are aggressive in nature
 - Typically monostotic
 - Located often in metaphyseal region of a long bone
 - Does not typically cross the joint

- Osteosarcoma
 - Most common primary bone tumor (>85%)
 - "Away from the elbow, toward the knee"...aaaand distal tibia

- Chondrosarcoma
- Fibrosarcoma
- Hemangiosarcoma

- Differential diagnoses
 - Osteomyelitis
 - Metastatic neoplasia

Hypertrophic Osteopathy (HO)

- Occurrence
 - Middle aged to older dogs
 - Usually due to concurrent thoracic or abdominal disease
 - Often pulmonary neoplasia; also reported with pulmonary abscesses, bronchopneumonia, bacterial endocarditis, heartworm disease, esophageal pathology, as well as hepatic and bladder neoplasia
 - Gradual or occasional acute onset in lameness
 - Animal reluctant to move
 - Symmetric, non-edematous, firm swelling of the distal limbs

- Roentgen signs
 - Begins on the abaxial surface of the distal metacarpal/metatarsal bones and progresses proximally along the diaphysis
 - Radiographs of the thorax and abdomen should be obtained to investigate for underlying disease

Conclusions

- All the previously described skeletal changes fall along a continuum
 - Some lesions will be clearly non-aggressive or aggressive
 - A lesion may have features of both
 - Should be characterized based on the MOST AGGRESSIVE FEATURE
 - Generalized or Focal bone lesions
 - If focal, apply following criteria;
 - Location of lesion
 - Zone of transition
 - Pattern of lysis
 - Periosteal reaction
 - Cortical disruption
 - Rate of change
 - If diagnosis is still unclear...
 - Repeat radiographs in 10-14 days
 - Metastasis check
 - Bone biopsy or fine needle aspirate
Fungal Osteomyelitis

- **Occurrence**
 - Typically seen in young to middle-aged dogs
 - May be seen in any breed; however, more common in large breeds such as working or sporting breeds
 - Usually hematogenous in origin
- **Systemic signs**
 - Fever
 - Lethargy
 - Anorexia
 - Lymphadenopathy, etc...

Fungal Osteomyelitis

- **Roentgen signs**
 - Variable radiographic appearance
 - Both lytic and productive changes
 - Periosteal reaction usually semi-aggressive
 - Osteolysis may extend through the cortex
 - Often sclerosis in adjacent medullary region
 - Usually in the metaphyseal region of long bones
 - May be joint involvement with extensive bone destruction
 - Often polyostotic but can be monostotic
- **Differential Diagnoses**
 - Primary bone tumors
 - Metastatic bone tumors

Bacterial Osteomyelitis

- **Occurrence**
 - Usually secondary to...
 - Direct inoculation (bite wound, open fracture, or surgery)
 - Extension from soft tissue injury
 - May be hematogenous in young or immunocompromised animals
 - Hematogenous route is much less common in small animals

Bacterial Osteomyelitis

- **Roentgen signs**
 - Earliest stage
 - No bony abnormalities, just soft tissue swelling
 - May take 7-14 days before periosteal reaction visible
 - Periosteal reaction typically solid and extends along shaft of diaphysis; however, can be lamellar to palisading/columnar

Bacterial Osteomyelitis

- **Nonhematogenous origin**
 - Lesion location depends on affected area
 - May affect multiple bones in the same limb
 - Lucencies around surgical implants
 - May see draining tract from surgical implant or foreign body
- **Hematogenous origin**
 - Metaphyseal due to extensive capillary network
 - Often multiple limbs affected (polyostotic)
- **Differential Diagnoses**
 - Healing fracture
 - Primary or metastatic bone tumor
 - Fungal osteomyelitis

QUESTIONS?