CARDIOVASCULAR MANAGEMENT OF THE ANESTHETIZED PATIENT
Mariana N. Crumley DVM, MS, DACVAA
AGENDA

- Physiology
- Protocol selection
 - Cardiovascular effects of individual drugs
- Monitoring
- Managing hypotension
- Common cardiac diseases
Physiology

- **Oxygen delivery**
 - \(\text{DO}_2 = \text{CaO}_2 \times \text{CO} \)

- **Arterial oxygen content**
 - \(\text{CaO}_2 = (1.34 \times \text{Hb} \times \text{SaO}_2) + \text{PaO}_2 \times 0.0031 \)

- **Cardiac output**
 - \(\text{CO} = \text{SV} \times \text{HR} \)

- **Stroke Volume**
 - Preload
 - Contractility
 - Afterload

- **Arterial blood pressure**
 - \(\text{CO} \times \text{SVR} \)
Patient Assessment

- History
- Complete physical exam
- Cardiovascular and pulmonary
 - Auscult heart
 - Prolonged periods of time
 - Right, left, sternum
 - Feel pulse
 - Quality
 - Synchrony
- Radiographs
- Bloodwork
Choosing a Protocol

- All drugs affect cardiovascular system
 - Patient dependent
 - Condition dependent

- Understanding drug side effects
 - Know what to expect
 - HR
 - CO
 - SVR
 - ABP
 - Step ahead in treating anesthesia complications
SELECTING YOUR PROTOCOL

- Sedation Protocol

 - Importance of sedation
 - Lowers dose needed of induction agent
 - Lowers MAC of inhalant
 - Smoother plane of anesthesia

 - Drugs available
 - Phenothiazine
 - Alpha-2 Agonist
 - Benzodiazepine
 - Opioid
Sedation Drugs
Phenothiazine

- Acepromazine
 - No change in heart rate
 - Decreases systemic vascular resistance
 - Cardiac output
 - Decreases blood pressure

- Patient selection
 - Healthy patient
 - Anxious patient
 - Avoid in very young and very old patient
 - Long lasting and non reversible
Sedation Drugs
Alpha-2 Agonists

- Dexmedetomidine
 - Decrease in heart rate
 - Increase followed by decrease in systemic vascular resistance
 - Increase in blood pressure followed by decrease in blood pressure
 - Decrease in cardiac output

- Patient selection
 - Healthy patient
 - Aggressive patient

 - DO NOT use in neonates (under 16 weeks)
Sedation Drugs
Benzodiazepines

- Diazepam and Midazolam
 - No changes in heart rate
 - No changes in systemic vascular resistance
 - No changes in blood pressure
 - No changes in cardiac output

- Patient selection
 - Sick patients
 - Not a great sedative in the healthy patient
 - Still lowers MAC and induction dose
 - Variable absorption if given IM or SQ
 - Long lasting but reversible
Sedation Drugs
Opioids

- Morphine, Hydromorphone, Fentanyl, Oxymorphone
- Buprenorphine
- Butorphanol

- Decrease in heart rate (receptor dependent)
- No changes in blood pressure
 - Decrease in blood pressure if histamine release
- No change in cardiac output

Patient selection
- Safe for most patients
- Very young – careful with bradycardia
- Appropriate opioid for each patient/problem
Induction Protocols

- Propofol
 - Decrease in systemic vascular resistance
 - Decrease in cardiac output
 - Decrease in blood pressure
 - Dose and rate of injection dependent
 - Caution in very sick patients
 - Caution in patients with cardiovascular disease

- Ketamine
 - Increase in HR - sympathetic
 - Increase in contractility - sympathetic
 - Increase in cardiac output – sympathetic
 - Caution in patients with arrhythmias
 - Caution in patients with LVOT obstruction
INDUCTION PROTOCOLS

- Etomidate
 - No changes in any cardiovascular parameter
 - Great drug for patients with cardiovascular disease
 - Induction quality - myoclonus
 - Expensive
 - Hemolysis
 - Adrenal suppression

- Inhalant Anesthetic – mask induction
 - Decrease in contractility
 - Decrease in systemic vascular resistance
 - Faster induction with low cardiac output
 - Slower induction with high cardiac output
MAINTENANCE

- **Inhalant anesthetic**
 - Isoflurane
 - Sevoflurane
 - Desflurane

- **Dose dependent**
 - Decrease in contractility
 - Decrease in systemic vascular resistance

CAUTION
Monitoring Anesthesia Cardiovascular

- Heart Rate
- Heart Rhythm
- Pulse oximetry
- Capnography
- Blood Pressure
MONITORING ANESTHESIA
CARDIOVASCULAR

- Circulation
 - Feeling for a pulse
 - As soon as animal is induced
 - Pulse is not an indication of blood pressure
 - Pulse pressure = systolic-diastolic pressure
 - Indication of presence of circulation
 - Palpate peripheral pulse
 - Lack of pulse for > 4 min
 - Irreversible brain damage
MONITORING ANESTHESIA
CARDIOVASCULAR

- ECG
 - Rhythm of the heart
 - Presence of arrhythmias
 - No information about circulation
 - No information about blood pressure
 - No information about cardiac output
 - Recommend to place ECG leads prior to induction
 - Recommend ECG on high risk patients
 - Episodes of tachycardia during PE
 - GDV
 - Splenectomy
 - Trauma patients (i.e. hit by car)
ECG
MOST COMMON ARRHYTHMIAS

- Second degree AV block
 - Increase in vagal tone
 - Drug induced
 - Opioids
 - Alpha-2 agonists
 - Inhalant
 - Pathological
 - May or may not require treatment
 - HR and blood pressure dependent
 - Atropine
ECG
MOST COMMON ARRHYTHMIAS

- Ventricular premature contractions
 - Heart disease
 - Cardiomyopathy
 - Dogs and cats
 - Other conditions
 - Hemangiosarcoma
 - GDV
 - Trauma
 - Cardiac contusions
 - May or may not require treatment
 - Characteristics, number of VPCs/minute
 - Lidocaine
 - IV bolus followed by CRI
ECG
OTHER POSSIBLE ARRHYTHMIAS

- Atrial tachycardia
 - Associated with cardiac disease
 - Rule out
 - Pain
 - Hypovolemia
 - Hypoxemia

- Ventricular tachycardia
 - Associated with cardiac disease
 - Should be treated
 - Reconsider anesthesia
Pulse oximetry
- Measurement of oxygen hemoglobin saturation
- Assess oxygenation
- No information about circulation or ventilation
- Results may be inaccurate
 - Poor circulation
 - Inaccurate pulse measurement
 - Severe vasoconstriction

Recovery
- Animal is breathing 21% oxygen
 - Helpful to assess hypoventilation
 - Asses need for supplemental oxygen
MONITORING ANESTHESIA
CARDIOVASCULAR

- Capnography
 - Used to assess ventilation
 - ETCO₂: 35-45 mmHg

- Provides information about
 - CO₂ production
 - Pulmonary perfusion
 - Alveolar ventilation
 - Respiratory patterns
 - Elimination of CO₂ from the anesthesia circuit
 - Anesthesia machine malfunction
MONITORING ANESTHESIA
CARDIOVASCULAR

- Production of CO$_2$ by tissues
- Circulatory transport of CO$_2$ to the lungs
- Elimination of CO$_2$ by the lungs to the anesthesia machine

- Facilitates early detection of life threatening conditions
 - Sudden decrease in ETCO$_2$
 - Decrease in cardiac output
 - Cardiac arrest
MONITORING ANESTHESIA
CARDIOVASCULAR

- Blood Pressure measurement
 - Most important parameter to measure
 - Organ perfusion
 - Anesthesia will change blood flow to all organs
 - Brain
 - Heart
 - Kidneys
 - GI

- Maintain minimal pressure to optimize perfusion to vital organs
Monitoring Anesthesia
Cardiovascular

- Systolic > 90 mmHg
- Mean > 60 mmHg
- Diastolic > 35 mmHg

- Systolic – contractility

- Diastolic – vasculature tone
 - Period during which heart is perfused

- Mean – 1/3 systolic + 2/3 diastolic
 - Most important pressure to measure
MONITORING ANESTHESIA
CARDIOVASCULAR

- Techniques
 - Non Invasive
 - Oscillometric
 - Doppler
 - Invasive blood pressure
 - Arterial line
I’m monitoring... now what?

- Monitoring is essential!
- Knowing how to react is equally important!

- Have a plan ahead of time
 - Condition of the animal
 - Positioning
 - Protocol chosen
 - Procedure being performed
 - Common complications
 - Allows planning
TREATING HYPOTENSION

- Step by step approach
- Evaluate your patient
 - Depth of anesthesia
 - Fluids
 - Drugs
DEPTH OF ANESTHESIA

- Inhalant anesthetics
 - Vasodilation
 - Decrease in contractility

- Check depth of anesthesia
 - Jaw tone
 - Eye signs and position
 - Vital signs
 - Respiratory rate and character
 - Heart rate

- Lower dose of inhalant
DECREASING MAC

- Balanced anesthesia
- Addition of intravenous drugs

- Improve analgesia
 - Redose analgesic
 - Morphine, hydromorphone
 - Add a CRI
 - opioid, ketamine, or alpha-2 agonist

- Improve muscle relaxation
 - Administer a benzodiazepine
 - Midazolam
 - Diazepam
FLUIDS

- Crystalloids healthy patient
 - Delivery of 3-5 ml/kg/hr
 - Patient and surgical procedure dependent

- Heart Disease
 - Avoid any fluid bolus!!
 - Fluid rate for surgical procedure
 - 2-3 ml/kg/hr
 - Patient dependent

- Fluid overload – pulmonary edema
 - Cats more likely to develop than dogs
TREATMENT DRUGS

- Drugs available for treating hypotension
 - Ephedrine
 - Dobutamine
 - Dopamine
 - Phenylephrine

- Characteristics
 - Different mechanisms of action
 - Choice of drug is case dependent
EPHEDRINE

- **Mechanism of action**
 - Direct: α and β receptors
 - Indirect: norepinephrine
 - Heart rate: tachycardia or severe bradycardia

- **Case selection**
 - Temporary increase in ABP and cardiac output
 - Before starting a CRI
 - Before surgical stimulation
 - As an emergency drug

- **Administration through a bolus injection**
 - Dose – 0.1-0.2 mg/kg – repeat if needed
 - 10-15 minutes
DOBUTAMINE

- **Mechanism of action**
 - Acts primarily on β_1 receptors with some β_2
 - Variable changes in heart rate

- **Case selection**
 - Low systolic pressure – increase in contractility
 - Elective cases
 - Emergency cases
 - Not good choice for septic cases

- **Administration through CRI**
 - Short acting
 - Dose – 1.0 mcg/kg/min – 10.0 mcg/kg/min
 - Dilute drug in saline
DOPAMINE

- **Mechanism of action**
 - Acts primarily on α and β receptors
 - Dose dependent
 - Variable changes in heart rate

- **Case selection**
 - Low dose – increase in contractility ($< 4 \text{ mcg/kg/min}$)
 - Elective cases
 - High dose – vasoconstriction ($> 5 \text{ mcg/kg/min}$)
 - Emergency cases

- **Administration through CRI**
 - Short acting
 - Dose – 2.0 mcg/kg/min – 15 mcg/kg/min
 - Dilute drug in saline
PHENYLEPHRINE

- **Mechanism of action**
 - Acts primarily on α-1 receptors
 - Vasoconstriction
 - Reflex bradycardia

- **Case selection**
 - Low diastolic pressure
 - Vasodilation
 - Inhalant, sepsis
 - Spinal anesthesia

- **Administration through CRI**
 - Short acting
 - Dose – 0.1 mcg/kg/min – 1.0 mcg/kg/min – to effect
 - Dilute drug in saline
Mitral Valve Degeneration

- Clinical presentation
 - Middle aged - senior dog
 - Small – medium breeds
 - Left apical systolic murmur

- Echocardiogram
- Radiographs
ANESTHESIA CONCERNS

- Regurgitation of blood from ventricle into atrium/lungs
 - Reduction in stroke volume
 - Pulmonary edema

- Minimize increases in SVR – increase amount of regurgitation
 - NO alpha-2 agonist

- Maintain blood pressure – proper myocardial oxygenation

- Maintain HR (80-120 bpm)
ANESTHESIA PROTOCOL

- Premedication
 - Opioid (full or partial mu agonist) and benzodiazepine
 - Oxygen 5 minutes + ECG

- Induction
 - Etomidate
 - Low dose propofol
 - Low dose ketamine
 - Rely on pre-medication to heavily decrease induction doses

- Maintenance
 - Inhalant (conservative – low SVR)
 - Regional anesthesia (dental block)
 - Opioid

- Fluid therapy 3-4 ml/kg/hr – no bolus!
Special Attention

- **Stop enalapril 12 hrs before anesthesia**
 - Refractory to treatment under anesthesia

- **Blood pressure**
 - \(< 140 \text{ mmHg systolic } > 90 \text{ mmHg}\)
 - Avoid increase in SVR (pain)
 - Low blood pressure – dobutamine (2-10 mcg/kg/min)
 - High blood pressure – analgesia

- **HR**
 - Low dose of atropine (0.01-0.02 mg/kg) IV
Dilated Cardiomyopathy

- Clinical presentation
- Large breed dogs
 - Doberman
 - Boxer (special case)
 - Labrador
 - Golden Retriever
- Murmur
- Tachycardia
- Arrhythmia
- Cardio consult highly recommended
ANESTHESIA CONCERNS

- Impaired systolic function – decreased contractility

- Stroke volume decreased due to decreased contractility
 - Flow unable to move forward
 - Decrease in cardiac output
 - Increased risk of fluid overload resulting in pulmonary edema

- Avoid increase in SVR (afterload)

- Avoid excessive decrease in afterload
 - Contractility will not increase sufficiently to compensate
 - Cannot use fluids to compensate for increase in intravascular space

- Avoid excessive increase and decrease in HR
 - Low HR – end diastolic volume may be too high
 - High HR – increased oxygen consumption + arrhythmia
ANESTHESIA PROTOCOL

- Premedication
 - Opioid (full mu agonist) +/- benzodiazepine (older patient + breed)
 - Calm until induction – risk of laryngeal collapse
 - Oxygen for 5 minutes + ECG

- Induction
 - Etomidate
 - Ketamine +/- low dose benzodiazepine
 - Benzodiazepine + Fentanyl induction

- Maintenance
 - Inhalant + balanced anesthesia

- Fluid therapy 3-5 ml/kg/hr
Special Attention

- Avoid increase in SVR
 - Do not use alpha-2 agonists

- Hypotension
 - No fluid bolus!
 - Dobutamine CRI – increase contractility with mild decrease in SVR

- Monitoring – full monitoring equipment
 - ECG – before induction

- Recovery
 - Oxygen mask until very awake
 - Quiet recovery
 - Continue to monitor blood pressure, HR, and oxygenation
Hypertrophic cardiomyopathy

- Clinical presentation
 - Young/old cats
 - Murmur present (not always)
 - Some breeds are predisposed
 - Maine Coon
 - Ragdolls
 - Medical condition
 - Hyperthyroidism

- Cardio consult highly recommended – echocardiogram
 - Stabilize condition if at all possible
ANESTHESIA CONCERNS

- Impaired diastolic dysfunction
 - Inability to change stroke volume
 - CO heavily depended on HR

- Avoid big changes in HR
 - High HR
 - less filling time - decrease stroke volume
 - Increase in myocardial oxygen demand
 - Low HR
 - decrease in CO

- Avoid decrease in SVR

- AVOID STRESS - ALWAYS
PROTOCOL

- Premedication
 - Opioid (full mu agonist) and benzodiazepine
 - Alfaxalone + opioid if fractious
 - Oxygen 5 minutes + ECG

- Induction
 - Propofol with low dose ketamine (1 mg/kg)
 - Etomidate

- Maintenance
 - Inhalant + proper analgesia for balanced anesthesia
 - Low dose Dexmedetomidine if needed – 1-2 mcg/kg IM

- Fluid therapy 3-5 ml/kg/hr – no bolus!
Special Attention

- Full monitoring

- Maintain systolic arterial blood pressure > 90 mmHg, but lower than 150 mmHg
 - Ephedrine or dopamine
 - NO fluid bolus

- Arrhythmias very common
 - VPC’s

- Post-op
 - Maintain on oxygen (mask)
 - Monitor ABP and SPO2
 - Proper analgesia
SAFE ANESTHETIC MANAGEMENT

- Knowledge of anesthetic drug pharmacology and their effects
- Knowledge of cardiac and respiratory physiology
- Proper monitoring
- Prior planning and preparation

High anesthetic risk? Evaluate the risk....

- Refer to a practice with an anesthesiologist
- Consult with an anesthesiologist
QUESTIONS?

VCA VRA (301) 926-3300
mariana.crumley@vca.com